How to Pull Off Thin Hand-Pulled Lamian Noodles (part 1).
By TIM CHIN.Hand-pulled noodles are notoriously difficult to make, let alone master. But with the help of science (and some nutritional yeast), they're easy to make at home.
If you’re a fan of Hong Kong cinema, you might be familiar with the 1997 action comedy Mr. Nice Guy, starring Jackie Chan. In the film’s opening scene, Jackie is on live television, standing at a flour-dusted table, stretching, twisting, and pulling a piece of dough into fine strands of noodles, a process the TV host can only describe as alchemy. “When I first saw [that movie],” recalls Luke Rymarz, a software engineer and hand-pulled noodle enthusiast based in San Jose, “I thought, ‘Oh cool, special effects. That’s neat.’ And then I realized that hand-pulled noodles were actually a thing. And I thought, all right, time to figure out how to do this.”
Luke spent the next year experimenting and documenting those experiments, blindly tinkering his way toward a passable recipe for lamian. Lamian translates to “pulled noodles,” and specifically refers to the thin variety famous in China. “At the time—this was 12, 13 years ago—there was hardly anything on the internet in English, or any information about it. All of my experience is [based on] the little bits I could glean off of Google translate. And just making dough, over and over again, for hours.”
Like Luke, I have spent the last few years learning how to make lamian. I first encountered these noodles at a tiny hole-in-the-wall lunch joint in Montreal. A rail-thin cook was throwing, twisting, pulling, and generally manhandling a mound of dough nearly the length of his body. Within seconds—after a few nimble flicks and plenty of flair—he created hundreds of strands of noodles. He tossed the noodles in a boiling cauldron of water, reached for another log of dough, and repeated this dance for the remainder of my meal—no hesitation, no breaks, not even a paltry sip of water. Talk about a real dough-slinger.
Of course, this guy made pulling those noodles look easy, even natural. It’s neither of those things. In fact, I’m willing to bet that anyone who has ever tried to make thin pulled lamian at home, with no prior experience, will tell you: It's hard. Recipes and videos exist online, but there’s a swamp of conflicting information, most of which leads down a treacherous black hole teeming with Reddit neckbeards, disgruntled YouTube commenters, and holier-than-thou Chowhound geeks.
Pulling noodles is something I never imagined pursuing. The technique seemed unattainable, unapproachable, reserved for masters of a time-honored and mystical craft—certainly inappropriate for home cooks. But as luck would have it, while working at my last test kitchen job with Sasha years ago, I was assigned to learn about pulled noodles in all their forms. After slurping virtually every pulled noodle Boston had to offer, I set about developing recipes. Lamian sat squarely among them. But after almost 50 tests, I still didn’t have a working recipe. Even building on the work of people like Luke, my method was fickle, riddled with inconsistencies, and difficult to replicate. The recipe never saw the light of day.
Time passed. I tried, here and there, to tinker with my formula. I watched videos. I spent hours reading archived forum posts from the furthest reaches of the web. I reached out to family members to help translate texts. I tried interning at noodle shops (the owners of which either shunned me or swore me to lifelong secrecy). I reached out to Luke for guidance. I was determined to figure out a recipe that would work for the home cook—no special equipment, no advanced noodle degree, no secret ingredients, no secrecy required.
Then I had a breakthrough. And it all came down to understanding gluten.
How Hand-Pulled Noodles Are Typically Made.
The de facto Mecca of pulled noodles is Lanzhou, the capital city of China’s Gansu Province. The city is the birthplace of Lanzhou beef noodle soup, a dish that’s inspired the creation of over 35,000 noodle shops across China. You can even attend one of a handful of noodle-pulling schools, with programs ranging in duration from a few days to a few years. There, students learn the ins and outs of making lamian, always by hand, starting from mixing and kneading dough all the way to pulling and cooking. In order to be certified, students must pass a final exam: Roughly twenty minutes to produce nine varieties of noodles of different sizes and shapes.
The process is simple: Wheat flour, water, salt, and sometimes an additive are mixed and kneaded until a pliable dough forms. This kneading stage takes anywhere from 15 minutes to over an hour, depending on the formula and the practitioner. The dough is stretched, doubled over, twisted, and stretched again, and this process is repeated until the dough can be stretched easily to arm’s length. The dough is then rolled in flour or oil and pulled into thin strands. The key to success is repeatable extensibility—or the ability to stretch the dough over and over without it breaking or tearing—which, as we’ll see, defies many of the commonly understood laws of gluten.
Sometimes additives like fat, alkalis, or other ingredients are incorporated into the dough to improve texture or to facilitate extensibility. The most common and traditional additive is a mysterious powder called penghui, which is derived from a desert plant called penghuicao (halogeton). The plant is roasted and processed with potassium carbonate and packaged as a commercial powder. Minute quantities of penghui are mixed with flour, resulting in a dough with ideal extensibility and chew. One source claims that the addition of penghui transforms the dough to putty, allowing the cook to stretch the dough seemingly at will.
The problem? Unless you or someone you know lives in China, finding penghui isn’t easy. And seeing as I didn’t feel comfortable asking people to import a sketchy white powder across international borders, I was left to find other ways to develop that all-important repeatable extensibility.
Gluten’s Role in Dough: Beyond the Basics.
To fully understand my noodle journey, it’s useful to know a bit about dough, and specifically gluten. If you’ve ever dealt with a dough in your life, you probably know something about gluten. Simply put, gluten is the protein matrix (basically a molecular web) that forms when wheat flour is mixed with water. Gluten is what gives wheat flour dough its structure and properties: The stretch, the texture, the snap, the stickiness, and flow.
If you’ve delved a little deeper, you might also know that gluten comprises two protein molecule units: glutenin and gliadin. The larger glutenin molecules are mainly responsible for the strength and elasticity of a dough. Look at them closely enough and you'll see they are kinked, linear, and chain-like, and have many sites for bonding with other glutenin molecules.
Smaller gliadin molecules, on the other hand, are said to contribute to the extensibility of a dough. They are spherical (or “globular”), have less surface area, and have limited capacity for bonding with other molecules.
Together, these two proteins are what give dough its viscoelastic properties—meaning it can simultaneously flow (viscosity) and be elastic.
Before going any further, let’s also define elasticity and extensibility—both of which are important to understanding noodle-pulling.
Elasticity.
Elasticity refers to a dough’s ability to return to its initial position after deformation. If you stretch a dough and it snaps back to its original shape, that dough is said to be elastic. Elasticity is important because it gives dough both structure and integrity. Without elasticity, a bread dough wouldn’t hold its shape or have any chew. Similarly, without elasticity, a noodle dough would fall apart if stretched too far, and likely disintegrate when cooked. On the other hand, a dough with too much elasticity would tear under too much stress, like a rubber band snapping.
Elasticity is the result of those large, chain-like glutenin molecules bonding together. Mixing, kneading, and resting dough all encourage this bonding. The more bonds between glutenin molecules, the more elastic a dough becomes.
(In some circles, dough nerds like to distinguish tenacity from elasticity. Tenacity is the property of a dough to resist a stretching action or deformation in the first place. You might encounter this phenomenon while trying to shape or stretch a low-hydration bread dough, for instance. For our purposes, this distinction is not too important. But the more you know, you know?)
Extensibility.
Extensibility is defined as the ability of a dough to stretch. For a pulled noodle dough like lamian, extensibility is crucial. In general, the more compact and spherical gliadin protein molecules contribute to extensibility because they move freely within the gluten matrix. They do not bond in the way that the larger glutenins do.
The balance between elasticity and extensibility determines how well a noodle dough fares. In general, the ideal noodle dough has high extensibility and just enough elasticity to retain its structure and chew.
Bonds Between Gluten Molecules.
The last and most critical concept—the one that most people gloss over—has to do with bonding between gluten molecules. Both glutenin and gliadin involve disulfide bonds. For gliadins, these bonds occur within single molecules to stabilize their spherical structure. But for glutenins, disulfide bonds (a.k.a. disulfide bridges) can occur between their larger, chain-like units. These bonds are strong, and they’re believed to determine the elasticity of a dough. In other words, the more disulfide bonds there are between glutenin units, the harder a dough is to stretch.
Think of a single glutenin molecule as a train with several train cars hooked together. Now imagine a second train on a parallel track with chains joining it to the first train. Those chains are disulfide bonds. That’s basically what occurs between glutenin units, but in multiple directions and multiple orientations, forming a complex, strong web that is difficult to break.
Luckily, these bonds can be broken.
Testing.
Trial 1: Hand Mixing, No Additives
By certain accounts, it was possible to pull noodles through sheer force of will and a little elbow grease. Apparently, you could even do it without additives. This was the first strategy I tested years ago: I mixed flour, water, and salt, and kneaded until the dough came together. I kneaded, tore, and stretched the dough further until I could get some semblance of extensibility. On average, this process took anywhere from 40 minutes to over an hour of sweaty, rage-inducing labor. At best, I could get the dough to stretch a couple times before tearing. At worst, I was stuck in dough purgatory, cursed with a dough that refused to relax and tore at the slightest suggestion.
I tinkered with hydration, flour type, and salt concentration. I tried no less than 35 times. But no matter which formula I used, I couldn’t readily produce a dough with repeatable extensibility. I did have some success with low-protein cake flour, which seemed to relax after persistent kneading and twirling, but I was still nowhere near pulling passable noodles.
One source recommended an overnight rest after initial mixing. In theory, this extended rest allows the dough to hydrate and gluten to develop fully, and relaxes gluten enough to facilitate stretching (a familiar phenomenon if you’ve ever made fresh egg dough pasta). There is also some enzymatic breaking of disulfide bonds, which contributes to extensibility. At first, this technique seemed promising. I could stretch the dough a few times easily. But after a few more passes, the dough eventually snapped back and tore in my hands. I still wasn’t producing enough extensibility.
If hand-mixing didn’t work—or wasn’t feasible in a sensible amount of time—then how else could I get an extensible dough?
Trial 2: Really, Really Aggressive Kneading.
The second strategy I found involved kneading a dough in a stand mixer for an extended period of time. The logic here was that aggressive, sustained kneading weakened the gluten network sufficiently to produce a plastic dough with low elasticity and high extensibility. (Initial mixing and kneading develops gluten to a point, producing a decidedly un-stretchy, elastic dough. But excessive kneading beyond that point could actually weaken the gluten network.) More precisely, those strong disulfide bonds could be broken mechanically; with sufficient force over time, enough bonds could be broken to produce a dough with repeatable extensibility. And instead of the back-breaking work of stretching and kneading by hand, a stand mixer could accomplish this more efficiently and in less time.
Anecdotally, this logic made sense to me. I remembered spotting a giant Hobart mixer at that noodle shop in Montreal, whirring away, kneading dough for the entirety of my meal. I even found interviews of noodle chefs in which they admitted to using large bread mixers to meet the demands of a large operation. In the most extreme example, I found a recipe that recommended kneading a dough for nearly two hours in a stand mixer.
And you know what? This method definitely worked. After two hours of kneading in a KitchenAid, I found this “over-kneaded” dough to be pliable, extensible, and similar to silly putty in texture. There was very little elasticity. Just a few minutes of stretching and twirling later, I was able to pull some respectable noodles.
But I still wasn’t satisfied. After all, I couldn’t justify the risk of burning out the motor of a pricey stand mixer just to make some noodles. I didn’t want to leave legions of would-be noodle pullers with $300 paper weights. Plus, two hours is a criminally long amount of time. Ain’t nobody got time for that.
Fortunately, there exist recipes with more moderate kneading times. The most popular of these comes from Luke Rymarz himself. The key feature is a 12-minute kneading time in a stand mixer, followed by another 15 minutes of stretching and twirling by hand. “I was doing it all by hand initially,” he says. But one day, after posting his recipe online, he was invited to demo his technique at a nearby cooking school. The instructor prepared his dough in a huge industrial mixer. “When he gave me that dough, I went, ‘Holy cow. This is amazing. This is the best dough.’ It was warm, it had a nice texture, it was like clay. Very pliable.”
Up until that point, Luke’s recipe was the closest I had come to successfully and consistently pulling noodles within a reasonable amount of time. The resulting dough was pliable, extensible, and fairly easy to pull into thin noodles. But the technique still had some disadvantages: The cooked noodles lacked the chew and structure I was after; the recipe required very specific brands of flour; and the technique demanded extensive stretching and twirling for success, despite all that time kneading in a stand mixer. The recipe had too many variables, and took too long to make. It was inconsistent. Most of all, I wanted a simpler method that didn’t rely so heavily on machinery. “I’ve repaired my stand mixer probably four or five times,” Luke warns. “So it’s not a great option for the home cook.”
Trial 3: Alkali Madness.
Since I couldn’t rely on machinery, I turned toward uncharted territory: additives. Using penghui was out of the question—I just couldn’t get my hands on any. But could there be any substitutes?
Popular opinions online suggested that it was the alkali in penghui that changed the texture of the dough and made it extensible. In reality, adding an alkali to a dough just made it tougher and harder to stretch. According to Luke, who tried every possible combination of kansui (a popular alkali solution used in ramen noodles), baking soda, and baked baking soda (sodium carbonate), “it helps with texture, and gives you a better chew, but it makes it harder to pull.”
I found his observation to be largely true. I tried adding baking soda and lye water in varying concentrations to a working dough recipe, kneading by hand and stretching until I could stretch the dough. As the concentration of alkali increased, the dough became increasingly difficult to stretch—in many cases tearing under stress.
If adding alkali wasn’t relaxing a noodle dough, then what was it doing, and how? This study suggests that the addition of kansui increases disulfide bond formation between glutenin units. More disulfide bonds mean more elasticity, and more elasticity means more chew at the expense of extensibility. Long story short, it appears that adding alkali makes pulling noodles harder, not easier.
to be continued .